

Q2 Outline the physiological consequences of therapeutic hypothermia at 32 degrees Celsius (March 2012)

Temperature – average kinetic energy of the atoms/molecules that make up a substance

Thermoregulatory responses maintain ideal human body temperature between 36-38 degrees

Hypothermia – core temperature below 35 degrees

Therapeutic hypothermia – active cooling of the body to 32-34 degrees Celsius with the aim of reducing cell damage

Physiological consequences of therapeutic hypothermia:

- METABOLIC
 - Increase in BMR with shivering
 - Mediated by increases in catecholamines and thyroxine
 - Lactic acidosis can develop due to shivering and decreased tissue perfusion
- CARDIOVASCULAR
 - Tachycardia initially then progressive bradycardia (PR prolongation on ECG)
 - Vasoconstriction peripherally and consequent increase in cardiac output and blood pressure, followed by progressive fall in cardiac output as temperature falls
 - Atrial and ventricular arrhythmias rare above 30 degrees → can lead to systole
- RESPIRATORY
 - Initial tachypnea then progressive decline in minute volume, oxygen consumption and CO₂ production
 - O₂/Hb dissociation curve moves to the left
 - Decline in hypoxic pulmonary vasoconstriction due to decrease in O₂ consumption
 - Increase in pulmonary vascular resistance
- CNS
 - Reduction in cerebral metabolic rate of oxygen (CRM_O2) 6% for every 1 degree fall in temperature
 - Reduction in glutamate and oxygen free radical release
 - Inhibition of inflammatory products (cytokines, interleukins etc)
 - Involuntary shivering which fatigues as hypothermia continues
 - Amnesia, apathy, dysarthria, progressive reduction in LOC (unconsciousness tends to occur below 32 degrees)
- HAEMATOLOGICAL
 - Coagulopathy due to reduction in platelet number and function (may also be sequestered in spleen)
 - Coagulation cascade may also be impaired due to enzymatic inhibition by cold
- RENAL
 - Cold diuresis due to decreased solute absorption in LOH
 - Decrease in renal blood flow as cardiac output falls
- GIT
 - Reduction in GIT motility