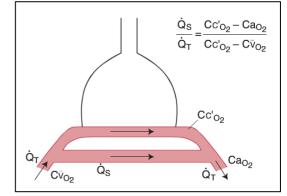
Q6 Define venous admixture and list its causes. (50% of marks) How is it diagnosed and how is it quantified? (50% of marks) (Sept 2009)

Venous admixture – the amount of mixed venous blood that would need to be added to pulmonary end-capillary blood to produce the given drop in PO2 seen between end capillary blood and arterial blood.

Causes


- Shunt (blood which passes through the pulmonary vasculature without coming into contact with ventilated alveoli)
 - True shunt anatomical (bronchial venous blood, thebesian circulation draining directly into left atrium)
 - Pathological shunt pneumonia, pulmonary oedema, congenital defects (eg, VSD)
- V/Q mismatch (describes the situation where ventilation and perfusion are not perfectly matched)
 - Normal V/Q mismatch blood which has perfused alveoli with a V/Q ratio of <1 (as occurs at the lung bases), resulting in blood that is not fully oxygenated
 - Pathological COPD, pulmonary fibrosis, pneumonia

Diagnosis

- Requires calculation of the A-a gradient using the alveolar gas equation $P_AO_2 = P_1O_2 (PCO_2/R) + F$, where $P_1O_2 = P_1O_2$ inspired $P_1O_2 = P_1O_2$, $P_1O_2 = P_1O_2$ inspired $P_1O_2 = P_1O_2$ in
- [P_AO₂ P_aO₂] gives the A-a gradient, which should be less than 7 (normal gradient increases with age, [2.5 + (age x 0.21)] is a formula used to estimate normal values)
- If a true shunt exists, the application of supplemental oxygen will not entirely resolve the hypoxia, because the higher Fi O₂ only reaches alveoli that are already ventilated. The Hb passing by these alveoli is already on the 'flat part' of the Hb/O₂ curve and exposing them to higher O₂ will only result in a very small increment in CaO₂.

Quantification

- The shunt equation can be used to quantify the venous admixture
- Q_T = cardiac output, Q_S = 'shunt' blood flow, C_c'O₂ = O₂ content at end of pulmonary capillary, C_aO₂ = arterial oxygen content and C_vO₂ = mixed venous oxygen content
- Remember that oxygen content = [(1.34 x Hb x saturation) + (0.003 x PaO2)]
- C_aO₂ can be calculated with an arterial blood gas using the above equation
- C_vO_2 can be calculated using the same equation with P_vO_2 and S_vO_2 from a pulmonary artery catheter sample

West's Respiratory Physiology 9th Ed

- C_cO_2 can be estimated using the P_AO_2 (from above) as an indicator of P_aO_2 , and 100% as the Hb saturation
- From this the amount of blood 'shunted' from right to left heart without exposure to oxygen can be calculated, and that % of blood volume = venous admixture