

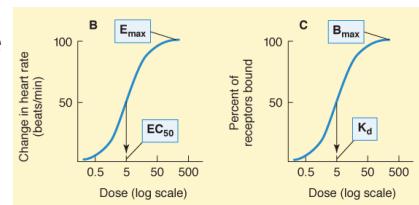
PHARMACODYNAMICS

Receptor theory: A receptor is a component of a cell or organism that interacts with drugs which results in a sequence of events which lead to an observed change in function. Receptors determine the **quantitative** relationship between dose or concentration of the drug and the pharmacological effects. Receptors are responsible for the **selectivity** of the drug function. Receptors **mediate the actions** of pharmacological agonists and antagonists. Katzung pg 15, Miller pg 215

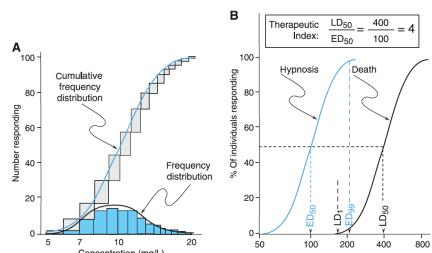
Evidence for the presence of receptors is inferred from the **biological response** of tissues to drugs, from **genome sequencing** and from **molecular biology**

Classic receptor theory describes interaction between ligand and receptor based on the **laws of mass action**. In simplest form this can be represented by the following formula;

rearranged:
(@ steady state)


$$\frac{[\text{D}][\text{R}]}{[\text{D}-\text{R}]} = \frac{\text{K dissociation}}{\text{K association}} = \text{K}_d$$

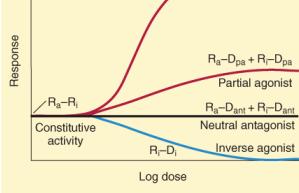
This is the **dissociation constant**
It is the concentration when 50% of receptors are occupied


A low K_d value indicates that less drug is required to occupy 50% of the receptors, implying that each molecule of drug is tightly associated with the receptor. A high K_d value indicates that more drug is required to occupy 50% of receptors, implying a weak binding to the receptor. K_d has been determined for many of the drugs administered during anesthesia. The reciprocal of K_d is **K_a - the association constant**. K_a is a measure of the affinity of the drug for the receptor. A drug with a low K_d value has a high K_a value and therefore high affinity for the receptor.

K_d may also be represented graphically as shown here. Again it represents 50% occupancy of the maximum number of receptors (B_{max})

EC_{50} represents the concentration of the drug which results in 50% of the maximal effect (E_{max})

GRADED, QUANTAL DOSES AND THERAPEUTIC INDEX

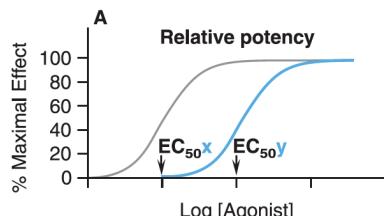
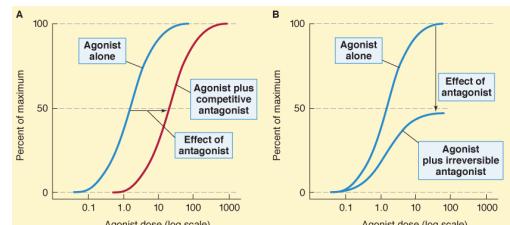


Responses to drugs can be either **graded** or **quantal**. In a graded response there is an increasing magnitude of response with increasing dose. In a quantal response once a certain number of receptors are occupied there is an all-or-nothing response (examples include mortality or loss of consciousness).

The frequency of response in the population is the important variable in quantal effects. This can be plotted as a gaussian distribution curve or more commonly as a sigmoid plot against concentration (either standard or log). The 50% of population with a quantal response represents the **ED_{50}** . (effective dose). Animal studies are used to determine the 50% lethal dose **LD_{50}** (or 50% toxic dose **TD_{50}**).

The **therapeutic index** represents the ratio of LD_{50} to ED_{50} . The higher the therapeutic index the greater the range of safety. Hemmings pg 98-99 Katzung pg 30-31

AGONISTS and ANTAGONISTS



AGONISTS and ANTAGONISTS

Receptors exist in activated and inactivated states, and the intrinsic efficacy of a drug is determined by the extent to which it stabilizes the active form of the receptor (i.e., **agonists** such as midazolam), the inactive form (i.e., **inverse agonists** such as metoprolol and bisoprolol), or displaces agonists from the binding site without favoring either form (i.e., **neutral antagonists** such as flumanezil). Agents that are only partly as effective as agonists no matter the dose employed are termed **partial agonists** (such as buprenorphine).

Competitive antagonism, more agonist is required to get to E_{max} . With an **irreversible** antagonist even with very high doses of agonist the system is unable to get to E_{max} .

A **chemical antagonism** works by directly binding to another drug which renders it inactive. An example of this is protamine which forms an ionic bond with heparin.

Physiologic antagonism works by producing a countering effect by other pathways to reduce the effect of a drug. It is less specific and sometime difficult to control.

QUANTIFYING AGONISM

Relative potency implies that in two agonists with equal efficacy, a smaller dose of one agonist is required to achieve maximal effect

Relative efficacy that the maximal effect of one agonist is greater than the other