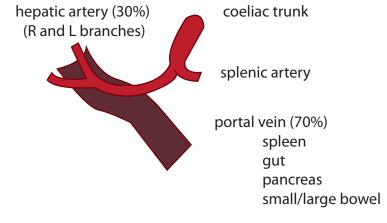
FEB 2008 OUESTION 16

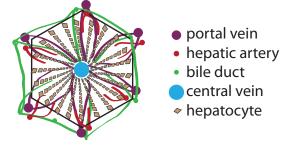
Describe the blood supply to the liver

Anatomy


extensive anastamoses

Hepatic

high pressure/flow sats 98% pulsitile


Portal

low pressure/resistance sats 85% (fasting) non pulsitile, valveless high protien content

functional anatomy

basic unit is the liver lobule consists of central vein in the middle of hexagon triad of hepatic artery, bile duct and portal vein bile canaliculi radiate out from central vein

Physiology

total blood flow is 1500ml (25% of CO)

has a capacitance function, storing 450mL of blood which is utilised during hypovolaemia consists of 30% hepatic artery supply and 70% portal vein supply both contribute to oxygenation (hepatic artery 50%, portal vein 50%) the liver demonstrates variable oxygen extraction to adapt to changes in portal vein oxygenation

Regulation

Intrinsic

Hepatic artery demonstrates some autoregulation Portal vein does not demonstrate autoreulation there is a semireciprocal relationship -

> hepatic artery resistance varies due to portal vein flow this maintains flow with portal vein fluctuations but not with hepatic artery decreases

Extrinsic

Neural control via adrenergic nervous system control hepatic artery has beta and alpha receptors portal vein has only alpha receptors

Hormonal control

glucagon, VIP, secretin dilate vasculature and increase flow (mainly hepatic art.) angiotensin II, vasopressin constrict both portal v. and hepatic art.

Other

Feeding increases GIT blood flow and indirectly increases hepatic flow Exercise reduces GIT blood flow and indirectly decreased hepatic flow Positive pressure ventilation decreases blood flow secondary to decreased CO

Measurement

by indirect clearance methods such as indocyanine green